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Calculations of the flow field under laminar conditions in a helical semicircular duct 
have been made by numerically solving the Navier-Stokes equations. With the flat 
wall of the duct being the outer wall, the solution of the momentum equations for 
Dean numbers below 105 gave, for the secondary flow, twin counter-rotating vortices 
of Taylor-Goertler type. However, above a Dean number of Dn = 105, two solutions 
were possible. One solution was similar to that obtained for Dn < 105. The other 
solution revealed four vortices for the secondary flow. For Dn > 105, convergence to 
either flow pattern depended on the initial guess used in the numerical solution. Flow 
visualization confirmed the possibility of the presence of both types of secondary flow 
patterns. 

1. Introduction 
Laminar fluid flow in curved circular ducts has been studied both experimentally 

and theoretically (Dean 1928; McConalogue & Srivastava 1968; I t6  1969; Austin & 
Seader 1973; Collins & Dennis 1975; Van Dyke 1979). Laminar flow in circular ducts 
has been shown to  be composed of a main flow along the curved duct axis with a 
superimposed secondary flow having twin counter-rotating vortices of Taylor- 
Goertler type. 

For flow in helical square and rectangular ducts, having two sides of the duct walls 
parallel to  the axis of rotation, Akiyama (1969), Cheng & Akiyama (1970) and Cheng, 
Liu & Ou ( 1  976) observed that a t  high Dean numbers, depending on the initial guess 
of the flow field, their numerical solution gave either a two-vortex or a four-vortex 
flow pattern. They solved the momentum equations using a stream-function vorticity 
formulation with a point relaxation iterative numerical technique. Flow visualization 
confirmed the presence of a four-vortex flow pattern for a square duct (Cheng, 
Nakayama & Akiyama 1977). 

Joseph, Smith & Adler (1975) solved the governing momentum equations in their 
primitive form for a square helical duct and noted the formation of a four-vortex 
flow pattern beyond a certain Dean number. However, no dual solution was reported. 
Also, they conducted flow visualization experiments confirming the presence of a 
four-vortex flow pattern. No photographs were published. 

The experimental and numerical work of Humphrey, Taylor & Whitelaw (1977) 
on fluid flow in a 90 degree bent square duct indicated the presence of a two-vortex 
flow pattern only. 

Collins & Dennis (1976a, b )  numerically solved the fluid flow problem in a curved 
right-angled isosceles triangular tube with the hypotenuse being the outer wall and 
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parallel to the axis of rotation. Their work indicated the presence of a two-vortex 
flow pattern with a sequence of corner vortices of the type identified by Moffatt (1964). 
However, their numerical solutions did not reveal the formation of a four-vortex 
pattern. For a similar configuration, Collins & Dennis (19763) gave a comparison 
of their results with a proposed asymptotic model as D n  -+ co, due to Smith (1976). 

The numerical work on fluid flow in semicircular helical ducts with the curved 
surface being the outer wall (Masliyah & Nandakumar 1979), did not reveal a four- 
vortex flow pattern. The usual two-vortex pattern was predicted. It appears then 
that the shape of the outer surface of a helical duct is important in determining the 
number of vortices of the secondary flow or a t  least it is easier to bring about the four- 
vortex pattern when the outer surface is flat. Using the previously developednumericsl 
procedure of Masliyah & Nandakumar, the case of flow in a helical semicircular duck 
is studied with the flat surface being the outer wall. 

In this communication, the term helical is used for bent ducts where the pitch of the 
helix is taken as zero. 

2. Flow equations, boundary conditions and numerical procedure 
The momentum equations in the stream-function vorticity form applicable to 

steady, fully developed incompressible laminar flow in a toroidal co-ordinate system 
(r,  8,#)  are given by: 

(i) axial component of Navier-Stokes equation 

(ii) vorticity-transport equation 

(iii) stream-function vorticity equation 

Here 
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FIGURE I .  Co-ordinate system. 

The flow equations were non-dimensionalized using r = r f / R ,  h = R,/R, v, = v:/(v/R),  
v, = v i / ( v / R ) ,  v+ = v i / ( v / R ) ,  u+ = w i / ( v / R 2 ) ,  $ = $ f / ( v R )  and Q = (aP'/a$) (R2/v,u). 
Here Q represents the dimensionless pressure gradient, v is the kinematic fluid vis- 
cosity, ,u is the fluid viscosity, $ is the secondary-flow stream function, wc is the 
vorticity in the axial direction and R, is the radius of curva,ture. The prime denotes 
a dimensional quantity and R is the radius of the duct. 

The radial and angular velocities are given by 

and the axial vorticity is given as 

The stream function $ and the axial velocity, v+, are taken as zero along the cir- 
cular sector boundary. The vorticity along the curved surface is given by (1/H) a2@/ar2 
and by ( 1/Hr2) a2$/ae2 along the flat surface. Along 0 = $m, symmetry was assumed 
for the axial velocity and $ and o are set to zero. The flow geometry is shown in figure 1. 

The flow equations were solved using a second-order central-difference approxi- 
mation. A relaxation technique was used in conjunction with the modified scheme of 
calculation as presented by Wilkes (1966), whereby two subgrids were used for each 
of the flow variables. This approach was proved to be twice as fast as the traditional 
successive over-relaxation (SOR) method. The details of the numerical technique are 
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given by Masliyah & Nandakumar (1977). Solutions were also obtained using the 
SOR method to ensure the validity of the numerical approach used in this study. 
The grid sizes used here are A6 = n/30 and Ar = 0.05. Tests were conducted by 
reducing A0 to n/60 and Ar to 0.03333. For a Dean number of 150, the average 
velocity did not change by more than 0.5 yo. 

The validity of the numerical solution was further checked by integrating the wall 
shear stress rr4 and rs4 and equating the total shear force to the pressure force. The 
maximum deviation between the two quantities was 2 yo for the coarse grid mesh. 

In this analysis, the Reynolds and the Dean numbers are based on the equivalent 
diameter in order to be able to compare with other flow configurations. Defining a 
friction coefficient C, by 

- APIA; = $ p ( ~ i ) ~  AiCf A#, 

where Apt is the dimensional pressure drop, (vi) is the mean axial velocity, A; is the 
cross-sectional flow area and A: is the area, per unit #, on which the $-directed shear 
stress acts. 

On putting A ,  = A i / R a  and A, = Ai/R2, the friction coeficient is given by 

where Re = Dd(v;)/v = (vc) D, and D, = D:/R = 4V;/AlR. V ;  is the dimensional 
wetted volume per unit # and Di is the dimensional equivalent diameter. For the 
flow geometry having the flat surface as the outer wall, then A ,  = Qn, A,  = h(n + 2) - 2 
and 

4( Qh7r - $) 
h(n+ 2) - 2 

D, = 

The symbol h is the dimensionless radius of curvature, R,/R. Utilizing the above 
definitions, the Dean number, Dn, becomes Dn = Re/hi. In the notation of Collins & 
Dennis and of Van Dyke, where K was used for Dean number, Dn = $ 0 , ~ .  

3. Flow visualization 
The semicircular duct was constructed by first cutting a semicircular channel 

into the edge of a 21.5 cm diameter, 3.75 cm thick Plexiglas disk. A strip of thin 
Plexiglas was then glued around the edge of the disk to form the outer wall of the 
semicircular duct. For the viewing section, the disk was fitted with a Plexiglas block 
having straight outer edges as shown in figure 2. To minimize glare, the disk was 
blackened except for a 2 mm slit a t  the viewing plane. Two microscope light sources 
were used to illuminate a plane, along the slit, perpendicular to the main flow direction. 
Distilled water was used as the experimental fluid. The water was provided by a 
constant head tank. 

Fluorescent ink (Hewlett-Packard Recorder Ink) was used to track the fluid. The 
ink was injected at  the water inlet through a micro-syringe. Once the ink is at  the 
illuminated plane, it  fluoresces and changes colour from a very faint red to  a bright 
green-yellow colour. As the very dilute ink has a very faint colour when not 
illuminated, it does not interfere with the viewing of the illuminated plane. 



On laminar $ow in curved semicircular ducts 473 

! water in 

Sernitircular duci 
(b ) 

FIGURE 2. (a) Experimental set-up for flow visualization. ( b )  Section across AA.  

The flow pattern was recorded using a camera with automatic winding mechanism 
fitted with a 50 mm Nikon macro lens. The exposure time varied from & to 4 second 
with a lens opening of f4 to f l  1 . 

4. Numerical results 
The numerical approach used to obtain the flow field is an iterative one. For given 

h and Q ,  the flow field was evaluated in an iterative manner until a converged solution 
was obtained. Convergence was determined when the relative change of the velocity 
a t  each grid point was less than 10-4 between two consecutive iterations. Using the 
converged axial velocity, the average axial velocity (v+) was then determined together 
with the friction coefficient and Dean number. For a given A ,  solutions were obtained 
by progressively increasing or decreasing the pressure gradient Q .  

When the value of the Dean number was less than 105, the flow-field solution con- 
verged to  the same values regardless of the initial guess used and the solution exhibited 
a two-vortex flow pattern for the secondary flow. However, for D n  > 105, depending 
on the initial guess of the flow field, the numerical solution converged to either a two- 
vortex or a four-vortex flow pattern. One solution is that of the usual two-vortex flow 
pattern of TayloI-Goertler type. The other solution gives a four-vortex flow pattern 
where two additional vortices are attached to the Taylor-Goertler vortices. 

The following example serves to illustrate the manner by which the initial guess 
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determines the type of solution obtained. Using an initial solution for h = co, the flow 
field for h = 30 and Q = - 0.25 x lo6 was obtained. The evaluated Dean number was 
73.9 and a two-vortex flow pattern was predicted. Using the flow-field data for 
Dn = 73.9 as the initial guess, a new solution for h = 30 and Q = - 0.7 x los was 
obtained having a Dean number of 159.4. This solution gave a four-vortex flow pattern. 
The converged results for Dn = 159.4 were then used as the initial guess for 
Q = -0.5 x lo6 and A = 30. The converged solution gave a Dn = 121.9 and it 
exhibited a four-vortex flow pattern. However, when the solution of Q = - 0-25 x 106 
(Dn = 73.9) was used as the initial guess for Q = - 0.5 x los and h = 30, a two-vortex 
pattern was obtained having a Dn = 131.4. In general, it was found that it is possible 
to maintain the type of the flow pattern of the initial guess as long as Q is changed by 
a small amount. 

Akiyama (1979) in his work on fluid flow in helical square channels found similar 
dependence on the initial guess of the flow field. However, Joseph et al. (1975)) also 
working with square curved ducts, did not detect a dual solution and reported a two- 
vortex pattern for Dn < 95 and a four-vortex pattern for Dn > 107. The Dean number 
for the square duct is based on a Reynolds number with the equivalent diameter as 
the characteristic length and the radius of curvature normalized with half the 
square width. 

Using flow visualization experiments, Joseph et al. reported a critical Dean number 
of 100, i.e. the minimum value of Dean number above which four-vortex flow pattern 
occurs. The numerical work on semicircular ducts of this study indicated that the 
critical Dean number is 105. 

The dual solution exhibited by the momentum equations is not surprising because 
the equations are nonlinear and multiple solutions to hydrodynamic problems can 
exist. The presence of a dual solution to the present flow problem can be discussed 
within the framework of the theoretical and the experimental studies of Benjamin 
(1978a, b ) .  In his work, Benjamin dealt with the case of flow problems that have more 
than one solution and the additional solutions arise from bifurcation a t  critical values 
of the flow parameters, namely Reynolds number. Benjamin defined two types of 
flows, (a )  a primary mode which is that developed as Reynolds number is gradually 
increased from values where the flow is unique and ( b )  a secondary mode which is 
possible only above a certain critical value of Reynolds number. Benjamin reserved 
the term secondary mode for flows whose loci in a state diagram are disconnected from 
the locus of the primary mode and in which the secondary mode arises from one-sided 
bifurcation. The bifurcation point can be reached from above, i.e., once the secondary 
mode is established, the bifurcation point can be reached by slowly decreasing Reynolds 
number of the flow. Once the Reynolds number is less than the critical value, the 
secondary mode vanishes. Also, Benjamin stated that a secondary mode cannot be 
realized experimentally by gradually increasing the flow parameter but rather by a 
quick change in its value or by an ‘experimental trick’. 

The observations, due to  Benjamin, described above were encountered in the 
numerical iterative procedure detailed earlier in this section. In  the present study, 
the primary mode represents the two-vortex flow pattern and the secondary mode 
represents the four-vortex flow pattern. The primary mode was realized whenever a 
new solution was obtained from an initial guess having a not so different Dean number; 
provided that the initial guess is that of the primary mode. The secondary mode was 
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FIQURE 3. Variation of C,h& with Dean number. *, h = 21.5; 
0 ,  h = 30; A, h = 50; ., h = 1000. 

realized from a primary mode when the initial guess was of substantially different 
Dean number and the Dean number of the converged solution is above the critical 
value. The critical Dean number a t  which bifurcation occurs was obtained by gradually 
reducing the Dean number along the secondary mode until it merged with the primary 
mode, in a manner proposed by Benjamin. 

Figure 3 represents a plot of a state function with a flow parameter. For this flow 
situation, the friction coefficient is taken as the state function discriminating amongst 
the different flows and the Dean number is the flow parameter. The exact location 
of the bifurcation point could not be established better than D n  = 105 T 1 as is shown 
in figure 3. 

Figure 3 shows the variation of C,h* with Dean number. The plot indicates that 
for a given radius of curvature, A, and a pressure gradient, Q, the average velocity 
as manifested by Dean number is higher for the case having a two-vortex flow 
pattern. This is not surprising, as more energy is likely to be dissipated in the four- 
vortex flow pattern. It is of interest to note that figure 3 is also similar to the well- 
known plot of torque coefficient, C,,, against Taylor number, Ta,  for flow between 
two concentric cylinders (Schlichting 1968). In this plot, two curves for C,, versus 
T a  were obtained for the cases of laminar Couette flow and laminar flow with Taylor 
vortices. 

The pressure-flow curve of figure 3 indicates that all the data points for the different 
values of the radius of curvature, A, lie on a singIe (two-branched) curve. This indicates 
that for h as low as 21.5 the flow behaviour is that of large h limit. Consequently, the 
results presented here are applicable for only large h range. 

The experimental work indicated that the flow becomes unstable a t  a Dean number 
of about 150. It is for this reason that the numerical work was not extended well above 
this value. However, a solution exhibiting a two-vortex flow pattern was still realized 
numerically for a Dean number as high as 200. 

The secondary flow is illustrated in figure 4 for a radius of curvature of 2 1.5 and for 
a Dean number of 121 for the case of a two- and a four-vortex flow pattern. The con- 
tours of the stream function are normalized with the global maximum stream function, 
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(0 ) 
Outer ( b )  

Outer wall 
FIGURE 4. Contours of normalized stream function for (a) two-vortex and (b) four-vortex secon- 
dary flow patterns, fi/fimx. (a) h = 21.5, Q = - 2 . 7 4 ~  lo5, Dn = 121.2, @.,x = 172.1. ( b )  
h = 21.5, Q = -3.01 x lo5, Dn = 121.4, = 159.8. 

Zlrmax, of the flow. The maximum value of the stream function of the secondary vortex 
is about one-half that  of the primary vortex, indicating that the radial and the angular 
velocities in the secondary vortex are of the same order as those in the primary vortex. 
The primary vortex is referred to  the vortex circulating close to the inner wall and the 
secondary vortex is that attached to the outer wall of the duct. 

The effect of the presence of the secondary vortex on the normalized axial velocity 
is clearly seen in figure 5. When the secondary vortex is absent, the contours of equi- 
velocity lines are parallel to  the outer wall and a boundary-layer-type flow is present 
for the entire wall. However, when the secondary vortex is present, the velocity 
contours indicate that fluid of lower velocity is carried towards the duct centre by 
the secondary vortex and a substantial distortion to the boundary layer a t  the outer 
wall occurs. For both the flow patterns the location of the maximum velocity no 
longer occurs a t  the duct centre but moves toward the duct corners. This feature is 
in agreement with the numerical results of Cheng & Akiyama (1970) and Collins & 
Dennis (19763). 
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FIGURE 5. Contours of normalized axial velocity for (a) two-vortex and (b)  four-vortex secondary 
flow patterns, v9/vdmmax. (a) A = 21-5, Q = - 2-74 x lo6, Dn = 121-2, v#-= = 779.2. ( b )  h = 21.5, 
Q = -3.01 x lo6, Dn = 121.4, v6-= = 778. 

5. Flow-visualization results 
Flow-visualization experiments were conducted using the set-up of figure 2 .  The 

flow pattern due to the presence of the secondary flow was observed and photographed. 
For flow rates below a Dean number of about 150, the flow was found to be steady 
and only a two-vortex pattern was observed. However, on introducing a 0.8 mm 
diameter wire through port B into the flow duct, a four-vortex pattern emerged. 
The size of the secondary vortex was independent of the length of the wire protru- 
sion in the duct as long as the protrusion is more than about half the duct radius. 
Photographs were taken with the wire fully inserted in the duct. When the Dean 
number was below 95, only a two-vortex flow pattern could be obtained, regardless of 
whether the wire protrusion is present or not. Figure 6 (plate 1) shows the two types 
of flow patterns, which are fairly simiIar to  the predicted streamlines of figure 4. 

When Dean number is higher than 150, flow oscillations were observed with and 
without the introduction of the wire disturbance. A typical flow pattern is shown in 
figure 7 (plate 2) for Dn = 171. Typical secondary vortex oscillation in the vertical 
plane with loss of symmetry can be observed. 

Flow visualizations were also conducted with an arrangement similar to that of 
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figure 2 but with a semicircular duct having its curved circular surface as the outer 
wall. No four-vortex flow pattern could be detected for Dean numbers as high as 250. 
This is in agreement with the numerical work of Masliyah & Nandakumar (1979). 

6.  Concluding remarks 
Numerical solution of the Navier-Stokes equations for fluid flow in a helical semi- 

circular duct with its flat wall being the outer surface indicated that transition of the 
secondary flow pattern occurs a t  a critical Dean number of 105. Flow visualization 
experiments indicated a slightly lower critical Dean number of 95. Previous work on 
helical square ducts also indicated the presence of a flow pattern transition. The 
corresponding critical Dean number was about 100, which is fairly close to the value 
found in the work on semicircular ducts. Flow in ducts with a curved (circular) outer 
surface was not found to exhibit a transition in the secondary flow pattern. It appears 
that the shape of the outer surface is important in determining the transition and the 
pattern of the secondary flow. Work should be conducted to  study the transition 
phenomenon of the flow pattern of the secondary flow in ducts with flat and curved 
outer surfaces. 

The effect of the radius of curvature on the location of the bifurcation point, in 
other words, on the critical Dean number should also be studied for small values of 
the radius of curvature. In this manner, mapping regions for a dual solution can be 
determined and thereby a three-dimensional diagram for a state function, C', with a 
shape parameter, A ,  and a flow parameter, Dn, can be established. 

The author is indebted to  the Natural Sciences and Engineering Research Council 
of Canada and the University of Alberta for financial support. The assistance in the 
experimental part of the work from Mr William Pick, Mr Helmut Schroeder and Mr 
John VanDoorn and encouragement from Professor S. C. R. Dennis are much 
appreciated. 
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FIGURE 6 .  Secondary flow showing (a )  two-vortex and ( b )  four-vortex 
flow patterns. h = 21.5, D n  = 121. 

MASLIYAH (Fucing p .  480) 



Journal qf Fluid Mechanics, Vol. 99, part 3 Plate 2 

FIGURE 7 .  Secondary vort,ex oscillation for Dn = 171. 




